=PrL

Formally verifying properties of a toy language

Guillem Bartrina | Moreno Franco Sainas Marcin Wojnarowski

Ecole Polytechnique Fédérale de Lausanne (EPFL)

CS550 - Formal Verification

December 2023

Formal properties of a toy language

Outline

Introduction Closedness
No redeclarations

[|

n
Language = Unique ownership
m Description m No use-after-free

Synta .
 oyntax Implementation
m Semantics . .
m Stainless interpreter
Approach m Stainless tracer
m Abstract state machine m Lean interpreter
Properties A Conclusions

Guillem Bartrina | Moreno, Franco Sainas December 2023 1/17

Introduction Formal properties of a toy language

Introduction

m Vast majority of programming languages do not have a formally verified core

m Functional languages are studied a lot, but the real world is messy and dominated
by imperative languages

m The goal is to define a toy language for which we can formally reason about some
properties

Guillem Bartrina | Moreno, Francc December 2023 2 /17

Language Formal properties of a toy la

Language

December 2023

Language e § Description Formal properties of a toy language

Description

Imperative

The only value type is a boolean

m
m
m All variables are "heap" allocated
m Lexical scoping

m

Started ambitious (product types, references, deep mutability)

Guillem Bartrina | Moreno, Francc December 2023 3/17

Language e § Description Formal properties of a toy language

Description

Imperative

The only value type is a boolean

m
m
m All variables are "heap" allocated
m Lexical scoping

m

Started ambitious (product types, references, deep mutability), quickly humbled

Guillem Bartrina | Moreno, Francc December 2023 3/17

Language e § Syntax Formal properties of a toy language

Syntax
1 |let myVar = true
2 | let other = false
3
4 |if other 1 other {
5 myVar := myVar 1 other
6 free other
7|}
8
9 |while myVar {
10 let p = myVar T true
11 myVar := p T (p 1 p)
12 |}

Guillem Bartrina | Moreno, Francc

(expr)

(stmt)

true | false Bool
(expr)1 1 (expr)2 Nand
(name) Ident
((expr)) Group

let (name) = (expr) Decl

(name) := (expr) Assign
if (expr) { (stmt) } If
while (expr) { (stmt) } While
free (name) Free
(stmt)y (stmt), Seq

December 2023

4/17

Language e § Semantics Formal properties of a toy language

Semantics

m Free conservatively forbids further usage of the variable

let var = true
if false {
free var
}
var = false # illegal

m Decl defines a variable in its scope

if false {
let var = true
}

var = false # not accessible

m Decl cannot shadow

let var = true
if false {
let var = true # illegal

}

Guillem Bartrina | Moreno, Francc December 2023 5 /17

Approach Formal properties of a toy la

Approach

December 2023

Approach Formal properties of a toy language

Approach

Implement an interpreter for our toy language. Given that a program is valid, prove
that its execution by the interpreter enjoys some properties.

Program Checker L3 Boolean + additional information

Interpreter

Goal: Program is valid =

Guillem Bartrina | Moreno, Fr: December 2023 6 /17

Approach e § Abstract state machine Formal properties of a toy language

Abstract state machine

Environment env : Name — Abstract location
Memory mem : Abstract location — Value
Allocator alloc : _ — Abstract location

Abstract state: (env, mem, alloc)

Guillem Bartrina | Moreno, Franco December 2023 7/ 17

Properties Formal properties of a toy la

Properties

December 2023

Properties e § Closedness Formal properties of a toy language

Closedness

All variable accesses exist in the current environment.

Definition (Closedness)

1 |varl := true # error
2 [if var2 { # error

3 [}

Guillem Bartrina | Moreno, Franco Sainas, Marcin Wojnarowski

Properties e § No redeclarations Formal properties of a toy language

No redeclarations

A declaration cannot declare an already declared name.

Definition (No redeclarations)

A program has no redeclarations if whenever evaluating Dec1(name,expr), env(name)
is not defined.

let var = true
let var = false # error
if true {
let var = false # error

g~ W N

¥

Guillem Bartrina | Moreno, Franco Sainas, Marcin Wojnarowski December 2023 9 /17

Properties e § Unique ownership Formal properties of a toy language

Unique ownership

No two variables in the environment point to the same location.

Definition (Unique ownership)

A program exhibits unique ownership when env is injective at all times.

Guillem Bartrina | Moreno, Franco Sainas, Marcin Wojnarowski mber 2023 10 / 17

Properties o § No use-after-free Formal properties of a toy language

No use-after-free

All variable accesses point to existing memory.

Definition (No use-after-free)

A program has no uses-after-free if whenever evaluating Ident(name) or
Assign(name, expr), mem(env(name)) is defined.

1 | let var = true
2 | free var
3 |var := true # error

Guillem Bartrina | Moreno, Franco Sainas, Marcin Wojnarowski December 2023 11 / 17

Implementation Formal properties of a toy la

Implementation

December 2023

Implementation Formal properties of a toy language

Implementation
m Stainless interpreter (big-step flavour)
m Lean interpreter

m Stainless tracer (small-step flavour)

Implementation details:

m Avoid throwing in Stainless: interpretation functions return either a set of
exceptions or the actual result.

m Limited interoperability between Maps and Sets in Stainless: introduce several
axioms.

Guillem Bartrina | Moreno, Franco December 2023 12 /17

Implementation e § Stainless interpreter Formal properties of a toy language

Stainless interpreter

Interpreter : Prog — State
Given a program Prog, the interpreter returns the final state State.

def evalStmt(stmt: Stmt, state: State): Either[Set[LangException], State]

m Pros: Most natural design, straightforward implementation, closer to the checker

m Cons: Symmetries with checker and proofs

Guillem Bartrina | Moreno, Franco December 2023 13 / 17

Implementation e § Stainless tracer Formal properties of a toy language

Stainless tracer

Interpreter problem with whiles: non termination.

Guillem Bartrina | Moreno, Francc December 2023 14 / 17

Implementation e § Stainless tracer Formal properties of a toy language

Stainless tracer

Interpreter problem with whiles: non termination.
Given a program P the tracer returns a list of states.
We mainly focus on the part of the tracer that given a program P and a state S returns
the program P’ the state S’ given by one step of execution.
T : Prog — State™
T:1 : Prog x State — Prog x State

14 / 17

Guillem Bartrina | Moreno, Francc December 2023

Implementation e § Stainless tracer Formal properties of a toy language

Stainless tracer

Interpreter problem with whiles: non termination.
Given a program P the tracer returns a list of states.
We mainly focus on the part of the tracer that given a program P and a state S returns

the program P’ the state S’ given by one step of execution.
T : Prog — State™

T:1 : Prog x State — Prog x State
m Pros: More control over intermediate states, interesting properties about the trace.

m Cons: Many preconditions about the input state, prove preservation of properties.

14 / 17

Guillem Bartrina | Moreno, Francc December 2023

Implementation e § Lean interpreter Formal properties of a toy language

Lean interpreter _:I\V/N

1 |partial def evalStmt

2 (stmt : Stmt) (env : Env) (mem : Memory)

3 (h : isTypeCheckedStmt stmt (keySet env))

4 : Env X Memory := match stmt with

5 -

6 | Stmt.conditional condition body =>

7 let cond := evalExpr condition env mem (typeCheck_conditionalCond h)
8 let (newEnv, newMem) := if cond

9

then evalStmt body env mem (typeCheckStmt_conditionalBody h)
else (env, mem)

H R R
N O

-- we drop the new env, but keep the new mem
(env, newMem)

I
A W
1
|

Guillem Bartrina | Moreno, Franco S December 2023 15 / 17

Conclusions Formal properties of a toy la

Conclusions

December 2023

Conclusions Formal properties of a toy language

Discussion

m Performance has to be traded for provable correctness

Symmetricity between properties and implementation

m Requires intermediate lemmas proving correlation between properties and
implementation

m Proving correctness is hard and very time consuming

m Despite the language being a subset of our original design, we are happy with the
results

Guillem Bartrina | Moreno, Francc December 2023 16 / 17

Conclusions Formal properties of a toy language

Future work

m Lack of memory leaks

m More language features

Guillem Bartrina | Moreno, Francc December 2023 17 / 17

Conclusions Formal properties of a toy la

Merci!

December 2023

	Introduction
	Language
	Description
	Syntax
	Semantics

	Approach
	Abstract state machine

	Properties
	Closedness
	No redeclarations
	Unique ownership
	No use-after-free

	Implementation
	Stainless interpreter
	Stainless tracer
	Lean interpreter

	Conclusions

