Formally Verifying Properties of a Toy Language — Project Report
Formal Verification, EPFL

Guillem Bartrina I Moreno Franco Sainas Marcin Wojnarowski
guillem.bartrinaimoreno@epfl.ch franco.sainas@epfl.ch marcin.wojnarowski@epfl.ch

January 9, 2024

1 Introduction

The vast majority of available mainstream programming languages were created without much of consid-
eration of their formal foundation. This makes it difficult to reason about safety guarantees. One can see
how that leads to memory errors, unsoundness, and general unsafety of the system. When retrospectively
trying to fix such issues, languages are often met with a important decision whether to sacrifice backwards
compatibility in return for a safer system. One such great example is the C+-+ language which has been
desperately fighting to be seen as a safe language for many years while being very committed to backwards
compatibility of the inherited problems of C. As such, even C+-+’s creator tries to distance himself from the
criticism of C++ being unsafe by saying “There is no "C/C++ language"”|4]. Only a subset of C programs
can be formally proven to be memory safe.

Our goal is to focus on creating a language for which we can formally reason about its properties. That
is, the language is defined in terms of its properties which guarantee safety of all programs written in the
language, not only a subset of them. While there exist languages which have very strong memory safety
guarantees such as unsafe-free Rust for which the memory model has been formally proven to be correct|2],
these formal proofs do not relate to the real implementation of the language in any way. Our approach will
differ in the way that the proofs will be conducted on the implementation of the language rather than some
abstract model of it. This gives additional guarantees of the absence of bugs (human errors), assuming the
properties have been stated properly.

Since functional languages have been studied a lot and the real world is messy, in this report we define a
toy imperative programming language with semantics that allow us to formally show that the implementation
of it given some properties (Sec. follows an error-free execution. As a backing paper we used the formal
definition of the static analysis of the Move language|l] which concerns itself with memory safety issues. It
too however proves things on an abstract model rather than the implementation.

We start by defining the language, its properties, how we approached the implementation, and conclude
with a discussion of how far we got and what challenges we have faced.

2 Language

We introduce FormalLang, a programming language for which we will develop an interpreter in subsequent
sections. This language is designed to prioritize correctness of its execution, exhibiting intentional minimalism
in its features. Notably, it exclusively employs a singular data type—boolean—and relies solely on the
functionally complete NAND (1) operator. Since we are not interested in type properties we find the boolean
type satisfatory. It is crucial to emphasize that, at this preliminary stage, the language is intentionally
unsuitable for real-world applications. Despite this limitation, it serves as a foundational starting point
crucial to achieving the project’s overarching goal: the formal verification of properties associated with
FormalLang. We provide a code snippet to exemplify a valid program written in FormalLang (Lst. .

As evident in the code snippet, variables are declared by specifying an expression, and the resulting
evaluated value serves as the initialized value for the variable. The language further supports the mutation
variables, if and while statements, and the freeing of variables from memory. The formal grammar (Fig. (L)),
is subsequently provided for comprehensive understanding.

true
false

let myVar =
let other

if other T other {
myVar := myVar 1 other
free other

}

while myVar {
let p = myVar T true
myVar := p 1t (p T p)

Listing 1: Program snippet written in FormalLang.

2.1 Operational Semantics

2.1.1 Virtual Model

(expr) == true | false Bool
| (expr); 1 (expr)s Nand
| (name) Ident
| (empr) Group

(stmt) = let (name) = (expr) Decl
| (name) := (expr Assign
| if (expr) { (stmt) } If
| while (expr) { (stmt) } While
| free (name) Free
| (stmit)r (stmit)s Seq

Figure 1: Grammar of FormalLang ex-
pressed in BNF-like syntax.

In our virtual model, we define a state represented by a tuple. This tuple comprises the essential components
of the system, including the environment (env), the set of freed variables (freed), the memory (mem), and

the next free location in memory (1)

Formally, the components are defined as follows:

e The environment is a mapping from variable names to locations

env : Names — Locs

The set of freed variables is a subset of variable names

freed C Names

e The memory is a mapping from locations to boolean values

The state itself is defined as a tuple

mem : Locs — Bool

The next free location is an element of the set of locations

| € Locs

state = (env, freed, mem, [)

We now state the operational semantics in big-step.

2.1.2 Expressions

TRUE FALSE

(True, state) —,, true

IDENT

X € dom(env)

(False, state) —,, false

NaND
(e1,state) >, vy

(e1 T eq, state) —», v1 T vy

(e, state) >, vo

env(X) € dom(mem)

(X, (env, freed, mem, [)) —, mem(env(X))

2.1.3 Statements

DecL
X ¢ dom(env) (e, (env, freed, mem, 1)) +, v

(let X = e, (env, freed, mem, 1)) —4 (env{l/ X}, freed, mem{v/l},1 4+ 1)

ASSIGN
X € dom(env) env(X) € dom(mem) X ¢ freed (e, (env,freed, mem,!)) —, v
(X :=e, (env, freed, mem, 1)) —, (env, freed, mem{v/env(X)},1)

IF-TRUE
(e, (env, freed, mem, [)) ++, true (s, (env, freed, mem, [)) +, (env’, freed’, mem’, ')

(if e {5}, (env, freed, mem, 1)) — (env, freed’, mem’, I')

IP-FALSE
(e, state) —,, false

(if e {s}, state) 4 state

WHILE-TRUE
(e, (env, freed, mem, [)) +, true (s, (env, freed, mem, [)) , (env’, freed’, mem’, ')
(while e {s}, (env, freed’, mem’, ")) ++, (env”, freed”, mem”,1")

(while e {s}, (env, freed, mem, 1)) +, (env, freed”, mem”, 1)

WHILE-FALSE SEQ
(e, state) —, false (s1,state) >4 state’ (sq,state’) — state”
while e {s}, state) —, state S1 So, state) 4 state
hil tat tat tat tate”
FREE

X € dom(env) X ¢ freed
(free X, (env, freed, mem, 1)) >, (env, freed U {X }, mem \ {env(X)},!1)

Here, we denote map{y/x} the extension of map with a new mapping from z to y.

Notice how exiting an if statement drops the environment but keeps the information about the freed
variables and the changed memory. This implies two semantics: variables have (lexical) scopes and the other
feature will become more apparent in the checker, which will have to conservatively assume the condition is
true and assume the variable was freed.

3 Properties

Using the abstract model we define on it properties that we wish to prove about the language. A few
properties are needed for general correctness of execution while others are for providing some guarantees
which we are interested in.

3.1 Closedness

Names of all variable accesses exist in the current environment.

Definition 3.1 (Closedness). A program is closed if whenever evaluating Ident(name), Assign(name, expr),
or Free(name) then env(name) is defined.

varl := true # error
if var2 { # error
}

free var3 # error

This ensures that all identifiers we use point to declared variables existing within the current scope.

3.2 No redeclarations

A declaration cannot declare an already declared name.

Definition 3.2 (No redeclarations). A program has no redeclarations if whenever evaluating Decl(name, expr)
then env(name) is not defined.

let var = true
let var = false # error
if true {
let var = false # error

This ensures that variables cannot be shadowed. This property was introduced to simplify reasoning
about the environment.

3.3 Unique ownership
No two variables in the environment point to the same location.

Definition 3.3 (Unique ownership). A program exhibits unique ownership when env is injective at all times.

This has no snippet to show violation as this property cannot be actually exhibited in code. This property
is useful for ensuring that a free construct will not create dangling pointers: if there were two names pointing
to the same location, freeing one of the variables would invalidate both variables. But since we only track
frees of the variables to which the free construct was applied to, we are unable to reason about such cases.
Thus we need to make sure that applying free to a variable will not affect any other variables.

3.4 No use-after-free

If a variable has been freed, we can no longer use it.

Definition 3.4 (No use-after-free). A program has no uses-after-free if whenever evaluating Ident(name),
Assign(name, expr), or Free(name) then name ¢ freed.

let var = true

free var

var := true # error
let bar = true

if false {
free bar

3

bar := true # error

3.5 No dangling pointers

If a variable has not been freed then it has a valid memory address.

Definition 3.5 (No dangling pointers). A program has no dangling pointers if whenever evaluating Ident(name),
Assign(name, expr), or Free(name) and name ¢ freed then mem(env(name)) is defined.

This ensures that when we evaluate a valid identifier we can be certain that it points to a valid memory
address. We restrict the definition to non-freed variables as freed ones no longer point to valid memory
addresses.

4 Approach

As mentioned already, in this project we intend to formally prove properties on the implementation of the
language rather than on some abstract model of it, which is the usual practice.

When we talk about the implementation of a language, we usually refer to an interpreter program that
implements its operational semantics. The interpreter takes as input a representation of a valid program
and executes it on a virtual machine: applies the sequence of state changes on the virtual machine given by
the program statements. In this framework, proving properties on the implementation of a language, and
subsequently on the language itself, translates to proving properties about the execution of valid programs on
the virtual machine by the interpreter. As a by-product, we can also obtain guarantees about the correctness
of the implementation of the interpreter.

The validity of the program supplied to the interpreter is crucial. It is precisely this assumption that
provides the evidence needed to prove the properties of its execution.

Our approach for this project has been to implement an interpreter for the presented language and then
to prove that the execution of any valid program by such interpreter enjoys some properties.
More precisely,

An instance of a program in our language is represented by an abstract syntax tree, which is just a complex
recursive data-structure. The definition of the AST model admits the construction of invalid programs.

The validity of a given program is determined by the checker or validation procedure, which ensures that
the program adheres to the specification. The checker also provides additional information that is convenient
for the proofs.

The language interpreter takes as input a program and executes it on the virtual machine. The execution
can either terminate successfully or be aborted by an exception. Exceptions signal the reachability of some
incorrect state of the virtual machine, which should not have been reached. All the exceptions reflect the
violation of some of the properties that we want to prove, but not all the properties have an exception
associated.

With this, our goal is to prove that given that a program is valid, the execution of this program by the
interpreter enjoys the desired properties: no exceptions are thrown, or other properties.

5 Implementation

When starting the project many challenges were quickly identified. There were two big decisions to be made
at the very start:

1. Do we want to complete the project in Stainless or in a more manual theorem prover?

2. What implementation of the interpreter do we use, a big-step-like or a small-step-like?

The first question was related to the amount of control we wanted in the proofs. Stainless is incredible at
proving things that can be easily seen to be true saving a lot of time. On the other hand interactive theorem
provers usually require a lot more manual labor to show even the simplest facts. But on the flip side relying
on Stainless’ inference can be detrimental once Stainless no longer can see a fact. Familiar with Stainless, we
opted for using the tool we know best.

The second question concerns itself with which implementation will be easier to prove properties about.
We quickly noticed that having the While construct in the language meant that an interpreter that tries to
evaluate the whole program at once (big-step-like) would be non terminating. We thought this would lead
to big complications so we chose to pursue the small-step-like interpreter.

Even though we had chosen the path we want to pursue, due to hitting many hard blockers on the way we
kept experimenting with two alternative paths with hopes of getting further with them. Considering many
hours were spent on the alternative implementations, we want to outline them here to contrast the various
approaches and then contrast them in Sec. [0}

The whole source code is stored on (GitHub!

https://github.com/shilangyu/formal-lang

5.1 Lean

Lean is a functional programming language that can be used also as an interactive theorem prover. Similarly
to a different popular theorem prover, Coq, Lean is based on the Calculus of Constructions. Mathlib was
used to provide foundation of structures such as finite sets and association lists. The Lean implementation
can be found on |GitHub| with the following files:

e Allocator.lean|Simple bump allocator which manages Locs and their underlying memory.
e Ast.lean This module defines the abstract syntax tree of the language.

e Checker.lean This module focuses on static properties of a program. Meaning, the analysis that can
be performed on source code without actually evaluating it.

e Helpers.lean This module stores helper lemmas, functions, utils, etc.

Interpreter.lean This module performs evaluation of the source code. It evaluates an AST given a
proof that the type checker has accepted this AST.

5.1.1 Structures

structure Name where /-- A memory location represented as a
name : String natural number. Basically a newtype over
Nat. -/
inductive Expr where structure Loc where
| true loc : Nat
| false
| nand (left right : Expr) /-- The memory maps variable locations to
| ident (name : Name) values. -/
abbrev Memory := @AList Loc (fun _ => Bool)
inductive Stmt where
| decl (name : Name) (value : Expr) /-- The environment maps variable names to
| assign (target : Name) (value : Expr) memory locations. -/
| conditional (condition : Expr) (body : Stmt) abbrev Env := @AList Name (fun _ => Loc)
| while (condition : Expr) (body : Stmt)
| seq (left right : Stmt) /-- A set of freed variables. -/
| free (name : Name) abbrev Freed := Finset Name
Listing 2: AST structures defined in Lean Listing 3: Definition of models in Lean

The AST definition (Lst. follows a standard format. There is a separation between expressions and
statements, and Name is a new type to not be confused with a string.

Then follow definitions (Lst. [3)) of the model structures needed to reason about the state of the interpreter.
We use an association list to represent partial maps. Keys of an association list are unique, and thus form a
finite set. This relation is important when relating the checker and the interpreter (to be discussed shortly).

5.1.2 Checker

/-- Returns true if the expression is well-formed. -/
def typeCheckExpr (expr : Expr) (vars : Variables) : Bool :=
match expr with
| Expr.true => Bool.true
| Expr.false => Bool.true
| Expr.nand left right => (typeCheckExpr left vars) && (typeCheckExpr right vars)
| Expr.ident name => name € vars

def typeCheckStmt (stmt : Stmt) (vars : Variables) : Option Variables :=
match stmt with
| Stmt.decl name value =>
if name ¢ vars then
let newVar := insert name vars

https://github.com/shilangyu/formal-lang/tree/main/lean/Lang
https://github.com/shilangyu/formal-lang/tree/main/lean/Lang/Allocator.lean
https://github.com/shilangyu/formal-lang/tree/main/lean/Lang/Ast.lean
https://github.com/shilangyu/formal-lang/tree/main/lean/Lang/Checker.lean
https://github.com/shilangyu/formal-lang/tree/main/lean/Lang/Helpers.lean
https://github.com/shilangyu/formal-lang/tree/main/lean/Lang/Interpreter.lean

if typeCheckExpr value vars then
some newVar

else
none
else none
/-- The assertion that ‘typeCheckStmt¢ accepted the input, ie it is not ‘none‘. -/
def isTypeCheckedStmt (stmt : Stmt) (vars : Variables) := (typeCheckStmt stmt vars).isSome

Listing 4: The checker for a FormallLang program. typeCheckStmt shortened to only show handling of
declarations.

The checker is a function which traverses each node of the AST once to verify some static properties
of a program. Since a checker is not concerned with allocation, it does not keep track of memory nor of
any locations. Therefore the Variables (Lst. it keeps track of is merely a finite set of names. The
checker module additionally defines the isClosedStmt and hasNoRedeclarations properties, which are in
fact just the subset of things being checked by the larger typeCheckStmt. The rest of the module defines
many useful lemmas (for instance, given that Stmt.decl has been accepted by the checker, we know that
Stmt .decl.value has also been accepted by the checker) and concludes with two larger ones: being accepted
by the checker implies that the program is closed and has no redeclarations. To produce such a proof we
first need to prove that the Variables being tracked by the checker and the properties are the same. This
is needed when stepping through Stmt.seq. Once we know the tracked variables are indeed the same, it
trivially follows that if the checker accepts some input then so will the properties.

5.1.3 Interpreter

The checker module does not need to know anything about the interpreter for the checker only reasons about
static properties. However, the converse is not true. For the interpreter to execute correctly, it must have a
guarantee that the checker has accepted the input.

/-- Entries in env have allocated memory. -/
def hasValidLocs (env : Env) (mem : Memory) := V name, V loc, env.lookup name = some loc — loc € mem

/-- Describes the result of evaluating a statement. Contains the resulting state as well as proofs for invariants. -/
structure EvalResult (stmt : Stmt) (env : Env) where

newEnv : Env

newMem : Memory

-- proof that the env tracked by the type checker and the interpreter is the same

sameEnv : typeCheckStmt stmt (keySet env) = some (keySet newEnv)

-- proof that all items in env have entries in mem

validLocs : hasValidLocs newEnv newMem

/-- Evaluates an expression given a proof that the type checker has accepted this input. -/
def evalExpr
(expr : Expr) (env : Env) (mem : Memory)
(h : typeCheckExpr expr (keySet env)) (validLocs : hasValidLocs env mem)
: Bool := match expr with
| Expr.ident name =>
let loc := AList.get name env (typeCheckExpr_ident h)
let val := AList.get loc mem (by
have p : AList.lookup name env = some loc := by
simp_all only [AList.get, Option.isSome_some]
split
simp_all only [Option.some.injEq, Option.isSome_some, heq_eq_eq]
have q := validLocs name loc

simp_all only [AList.get, Option.isSome_some, forall_true_left]
)

val

def evalStmt
(stmt : Stmt) (env : Env) (mem : Memory)
(h : isTypeCheckedStmt stmt (keySet env)) (validLocs : hasValidLocs env mem)
: EvalResult stmt env := match stmt with

Listing 5: The interpreter. Evaluates structures given proofs of correctness. Cut for brevity.

The interpreter (Lst. [5)) receives as input the AST, the environment, and the memory, but also proofs of
correctness. The most important input proof is being accepted by the checker. This allows the interpreter

to formally prove lack of some runtime errors. For instance, since we know the input is closed, we know that
when evaluating Expr.ident we know that this identifier exists in the environment. This is visible in the
listing as AList.get name env (typeCheckExpr_ident h), where we get an element from the environment
by providing a proof that it is indeed there. This proof is deduced by a lemma based on h, the proof that
the input has been accepted by the checker.

The interpreter also has to inductively produce proofs when stepping through the AST. As visible in
EvalResult, the interpreter maintains proofs such as:

e The key set of the environment is the same as the one computed by the type checker. This equality is
again needed when stepping through Stmt.seq.

e All values in the environment are valid keys to the memory, as expressed by the proposition hasValidLocs.
This is of course needed whenever dereferencing memory to make sure the memory entry is actually
there. This can be seen being in a proof when accessing the memory to compute let val.

As one can see, while the interpreter is not necessarily a terminating functions, due to the evaluation of
such constructs as While, it is a pure one. The result will be always computed without any errors being
encountered on the way.

When new variables are declared they go through an allocator, which mimics a bump allocator. It looks
at the current environment and takes the maximum of env[Names] and adds one, yielding a unique location.
At that location a new memory cells is added to maintain hasValidLocs.

5.1.4 Implementation status

The implemention has all language constructs except Free which does not actually perform freeing. Not
all properties were proven. This implementation not being the primary focus, while still a lot of time, had
less time spent on it. Closedness (Sec. and lack of redeclarations (Sec. have been fully proven.
Unique ownership (Sec. was not started, but the idea would be simple: given that only Stmt.decl
alters the environment, we can derive unique ownership from the fact that the allocator returns a location
that is not used by any variable. Use-after-free (Sec. [3.4) was not even attempted due to lack of a full Free
implementation. Finally, no dangling pointers (Sec. as a partial implementation with missing steps but
with code comments about how the proof should be continued.

5.2 Stainless

As previously indicated, we have implemented both an interpreter and a tracer in Scala. The interpreter
follows a big-step operational semantics, executing the entire program in a single step by recursively traversing
the abstract syntax tree representation. In contrast, the tracer employs a small-step operational semantics,
executing one interpretation step at a time and returning the pair next statement and updated state.

The code is available on |GitHub| has the following identical structure for both implementations:

e AST.scala defines the abstract syntax tree.

e Model.scala defines the state model, including memory and environment, along with FormalLang
exceptions.

Interpreter.scalal contains the implementation of the interpreter.
e Checker.scalal contains the implementation of the checker.

e Proofs.scala contains the Stainless proofs.

5.2.1 Structures

The AST [0]is defined by means of two algebraic data types, one for expressions and one for statements.
_Block is a special statement used internally by the tracer and cannot be used to construct programs. The
model [7] defines the types and structures needed to reason about the state of the interpreter and the tracer.

https://github.com/shilangyu/formal-lang/tree/main/lang/src/main/scala/lang
https://github.com/shilangyu/formal-lang/blob/main/lang/src/main/scala/lang/AST.scala
https://github.com/shilangyu/formal-lang/blob/main/lang/src/main/scala/lang/Model.scala
https://github.com/shilangyu/formal-lang/blob/main/lang/src/main/scala/lang/Interpreter.scala
https://github.com/shilangyu/formal-lang/blob/main/lang/src/main/scala/lang/Checker.scala
https://github.com/shilangyu/formal-lang/blob/main/lang/src/main/scala/lang/Proofs.scala

type Name = String

enum Expr {

case True type Loc = Biglnt

case False type Env = Map[Name, Locl]

case Nand(val left: Expr, val right: Expr) type Mem = Mapl[Loc, Boolean]

case Ident(val name: Name)
¥ // --- Interpreter ---

case class State(val env: Env, val mem: Mem, val nextLoc:

enum Stmt { Loc)

case Decl(val name: Name, val value: Expr)

case Assign(val to: Name, val value: Expr) // --- Tracer ---

case If(val cond: Expr, val body: Stmt) case class State(val envs: List[Env], val mem: Mem, val

nextLoc: Loc)
case Seq(val stmtl: Stmt, val stmt2: Stmt) enum Conf:
case Free(val name: Name) case St(state: State)

case Cmd(stmt: Stmt, state: State)
case _Block(val stmt: Stmt) // Tracer Lo L. .
} Listing 7: Definition of models in Scala

Listing 6: AST structures defined in Scala

The environment and the memory are standard Stainless maps. The state of the interpreter uses a single
environment whereas that of the tracer uses a stack of environments. Additionally, the tracer defines another
algebraic data type for the two kinds of configurations handled in its logic.

Much like for Lean, in our proofs we need to reason about sets and maps and their sets of keys. Stainless
offers limited interoperability between these abstractions, so we had to add some convenient operations and
define some axioms on them.

For instance, we have defined the operation keySet that takes a map and returns its set of keys. Then
we have defined the following axiom: if a given set S is equals to the set of keys of a given map M, then the
set obtained by adding some value k to S is equal to the set of keys of the map obtained by adding some pair
k—vtoM.

5.2.2 Exception handling

The following are the exceptions (LangException) that can be thrown by the interpreter or the tracer:

e UndeclaredVariable: Occurs when attempting to access a variable that has not been declared within
the environment;

e RedeclaredVariable: Occurs when a variable is declared using an identifier that is already present in
the existing environment;

e InvalidLoc: Occurs when attempting to access a memory location that is not defined in memory.

e _EmptyEnvStack: Special exception used by the tracer. Occurs when attempting to access an empty
stack of environments.

To avoid throwing exceptions in Scala, which are hard to manage with Stainless, the various interpretation
functions are defined to return either a set of exceptions or the actual result of the execution. We use the
Stainless either, as follows: Either [Set [LangException], T]

5.2.3 Checker

The checker consists of a set of functions that traverse the AST once to verify some static properties of the
program. Much like for Lean, these are not concerned with allocation, so they do not keep track of memory
nor of any locations. A program is deemed valid only when it successfully passes all these checks.

def stmtIsClosed(stmt: Stmt, env: Set[Name]): (Boolean,
Set [Name]) =
stmt match {
case Decl(name, value) => (exprIsClosed(value, env), env

+ name)
def exprIsClosed(expr: Expr, env: Set[Namel): case Assign(to, value) =>
Boolean = expr match { (env.contains (to) && exprIsClosed(value, env), env)
case True => true case If(cond, body) =>
case False => true val (b, _) = stmtIsClosed(body, env)
case Nand(left, right) => (exprIsClosed(cond, env) && b, env)
exprIsClosed(left, env) && exprIsClosed(case Seq(stmtl, stmt2) =>
right, env) val (s1, menv) = stmtIsClosed(stmtl, env)
case Ident (name) => env.contains (name val (s2, nenv) = stmtIsClosed(stmt2, menv)
) (s1 && s2, nenv)
} case Free(name) => (env.contains(name), env)
L. . // --- Tracer ---
Listing 8: Expression closedness check case _Block(stmt0) =>
val (b, _) = stmtIsClosed(stmtO, env)
(b, env)

Listing 9: Statement closedness check

The functions [§ and [J] verify, respectively, that the given expression or statement is closed. Sim-
ilarly, stmtHasNoRedeclarations verifies that the given statement does not contain redeclarations, or
stmtHasNoBlocks that does not contain blocks.

5.2.4 Interpreter

The interpreter is a function that, given as input the program and the initial state, executes the entire
program and returns the final state.

def evalExpr (expr: Expr, state: State): Either[Set[LangException], Boolean]
def evalStmt(stmt: Stmt, state: State): Either [Set[LangException], Statel]

It traverses the program tree once, modifying and/or propagating the current state to and from recursive
calls, and short-circuiting when an exception is "thrown".

5.2.5 Interpreter implementation status

The interpreter is the first implementation we tackled, but we soon focused our efforts on the other two.
Hence, it is the least developed of the three. The implementation supports all of the language constructs
except While. This interpreter is the most similar in form (i.e. traversal, shape, logic, etc.) to the checker,
so all indications are that it would produce the simplest proofs for our properties. However, almost none of
the properties have been proved due to the main attention on the other implementations.

Closedness [3.1] is the only property that has been proved. It has a fairly simple inductive proof with
a small difficulty. Both the checker and the interpreter check/execute both statements of a Seq, passing
some results of the first call to the second. To prove closedness we need to prove the lemma that these two
intermediate objects, i.e. the set of names and the state, are consistent.

case Seq(stmtl, stmt2) =>

case Seq(stmtl, stmt2) => evalStmt (stmtl, state) match
val (cl, mnames) = isStmtClosed(stmtl, names) case Left(excep) => Left (excep)
val (c2, fnames) = isStmtClosed(stmt2, mnames) case Right(mstate) => evalStmt(stmt2, mstate) match
(cl && c2, fnames) case Left(excep) => Left (excep)

case Right(fstate) => Right(fstate)

Seq case, checker on the left and interpreter on the right.

5.2.6 Tracer

Given a program, the tracer executes it statement by statement, going through a trace of states. The tracer
consists of two functions: evalStmtl and evalStmt. The former executes a single step of computation,
returning the updated state, while the latter invokes evalStmt1 recursively.

10

def evalExpr (expr: Expr, state: State): Either[Set[LangException], Boolean]

def evalStmtl(stmt: Stmt, state: State, blocks: BigInt): Either[Set[LangException], Conf]
def evalStmt(stmt: Stmt, state: State): Either [Set[LangException], Statel]

We opted to implement the tracer to attain fine-grained control over the execution process. For instance,
when confronted with infinite while statements, the big-step interpreter enters in a non-terminating state.
In contrast, the tracer, with its function that executes a single statement and returns the subsequent state,
ensures termination even in such scenarios.

For this reasons, the focal point of interest is on reason about properties of evalStmt1.

To enable the tracer’s functionality, we introduce several changes and additions to the virtual model7} One
prominent adjustment involves the evolution of the state tuple’s environment tracking. It transforms from
a single environment to a stack of environments implemented as a list. This modification proves crucial for
managing scopes, as seen in if and while bodies where the environment atop the stack needs to be discarded
to eliminate variables declared within it. To manage the environment stack, we introduced a ’synthetic’ block
in the AST [6] This block, not derivable from a program written in concrete syntax, is exclusively employed
by the tracer for scope management. Another significant addition is the Conf type, that represents either a
state or a pair composed of a statement and a state. Additionally, the function evalStmt1 includes a new
parameter that tracks the number of open blocks.

5.2.7 Tracer implementation status

The majority of our efforts were dedicated to implementing and verifying the tracer, which proved to be the
most challenging path of the three. Initially, we anticipated a smoother process due to the increased control
we had; however, the difference in form (i.e. traversal, shape, logic, etc.) between the checker and the tracer
made it difficult to effectively utilizing the evidence provided by the checker in our proofs.

The small-step interpreter processes the program and outputs the next step and the state, effectively
storing some state in the form of Blocks, which represents open scopes to be popped when the block will be
closed. Additionally, it utilizes a more complex model involving the stack of environments. First we undertook
the task of proving various properties to ensure the correct operation of the tracer with respect of the enhanced
state and modifications applied to the program. These included establishing the monotonicity of the stack of
environments with regards to the subset relation (ensuring that all elements from the previous environment
in the stack are present in the current one), verifying the non-emptiness of the stack of environments, and
ensuring consistency between the number of blocks and environments in the stack.

As the interpreter, the tracer supports all of the language constructs except While.

Given a program and a state, the execution of a single step of the tracer results in the next program
and state in the sequence. Therefore, the program is changing at each step. Given the evidence from the
checker, we can easily prove Closednesd3.1] for a single step of computation. Since the checker is only applied
to the initial program, we only have this evidence and can therefore apply the proof for the first step of the
sequence. After that, the program has changed, so we no longer have the evidence we need. Therefore, in
order to prove Closednes for the entire execution of the program (i.e. all steps of the tracer), we need to
prove that the evidence initially given by the checker is preserved at each step of the computation. In this
way we can inductively apply the above proof to prove the subsequent goal.

Most of the effort devoted to the tracer has been focused on proving this preservation lemma. At one
point, we thought we had a proof for it, but we discovered a mutual recursion error in the proof that we
overlooked because we had termination checking turned off due to other problems. Because of the very
different nature of the checker and the tracer, it has proven extremely difficult to reconcile the evidence
provided by the checker with our proofs. Ultimately, we have decided to state it as an axiom, hoping to prove
it in the future.

A similar story is the absence of redeclarations[3.2] But this time we opted to directly state preservation
as an axiom, recognizing the complexity involved.

Unique ownership [3.3] was also attempted. As opposed to other properties, its proof does not depend on
evidence supplied by the checker but solely on the operation of the tracer. But it is again a preservation
property, of the injectiveness of the environment. Progress has been made toward a first lemma that states
that the allocator location is fresh (i.e., it is different from all locations in the environment/state), but it is
not finished.

11

Finally, use-after-free 3.4 and no dangling pointers [3.5 were not attempted because we prioritized proving
preservation lemmas, plus Free was added to this implementation relatively late.

6 Conclusions

In this project we defined a language and its semantics, defined a set of properties, and finally presented our
approach to deriving correctness guarantees. We operated on a real implementation of that language rather
than on an abstract definition of it.

6.1 Differences in approaches

We explored various approaches which we wish to now contrast. As mentioned at the beginning of the
implementation section, the two most important differences were the choice of tool and interpretation style.

With Lean we enjoyed the fast development-feedback cycle where while writing proofs we are informed
about whether the proof step is correct and what is the current goal to prove immediately. The proofs are
precise so we do not have to worry about some potential nondeterministic factors. This is much different
than our experience with Stainless, where we often encountered proofs being seen as valid tricking us into
believing the proof is good enough. But after the cache is invalidated or cleared, our unchanged proof is
no longer seen as valid. Fixing that required either hoping that eventually if left running for long enough
Stainless would see it as valid once again, or debugging which exact condition is not easy to see for Stainless
to then sprinkle some asserts to help Stainless see the condition indeed holds. This lead to losing trust in
the cache and disabling it in favor of proofs that are more explicit to have them consistently being proven
by Stainless. Combined with requiring a long time to give feedback about the proof correctness resulted in
a very time consuming development cycle. On the other hand, Stainless was much more pleasant with its
incredible power to prove all sorts of theorems without much of our help. In Lean that did not happen, and
even the simplest properties needed a tedious proof.

The other difference is using a big-step and small-step style interpreter. The former is easier to define
and to relate it to the checker, which is also written in a big-step style. However, as mentioned previously, it
suffers from being non-terminating and thus conducting proofs on it end up potentially being non-terminating
as well. These kind of proofs are rejected. The small-step style interpreter is more complicated, for instance
requiring the usage of a stack of environments, and thus results in more complicated proofs. For the tracer
many lemmas had to be proven about consistency and the relation with the checker before any interesting
properties can be tackled.

6.2 Future work

Other than fully completing the goals that has been set, the language could be always extended with new
constructs. The nature of requiring formal proofs of the implementation will force a careful design to see how
a feature interacts with all properties. Finally more properties can be added, such as lack of memory leaks
which the current operational semantics do not guarantee (leaving an if-statement drops the environment
but keeps the memory causing a leak).

References

[1] Sam Blackshear et al. The Move Borrow Checker. 2022. arXiv: 2205.05181 [cs.PL].

[2] Ralf Jung et al. “RustBelt: Securing the Foundations of the Rust Programming Language”. In: Proc.
ACM Program. Lang. 2.POPL (Dec. 2017). DOI: |10.1145/3158154. URL: https://doi.org/10.1145/
3158154.

[3] mathliby — The math library of Lean 4. URL: https://github.com/leanprover-community/mathlib4.
[4] Bjarne Stroustrup. Delivering Safe C++. 2023. URL: https://youtu.be/I8UvQKvOSSw?7t=163.

12

https://arxiv.org/abs/2205.05181
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://github.com/leanprover-community/mathlib4
https://youtu.be/I8UvQKvOSSw?t=163

	Introduction
	Language
	Operational Semantics
	Virtual Model
	Expressions
	Statements

	Properties
	Closedness
	No redeclarations
	Unique ownership
	No use-after-free
	No dangling pointers

	Approach
	Implementation
	Lean
	Structures
	Checker
	Interpreter
	Implementation status

	Stainless
	Structures
	Exception handling
	Checker
	Interpreter
	Interpreter implementation status
	Tracer
	Tracer implementation status

	Conclusions
	Differences in approaches
	Future work

