1 Boolean algebra

1.0.0.1 Logical statement

p, q, r - propositional variables

a, b, c - values

1.0.0.2 Logical connectives

1.0.0.3 Commutative operation

a + b = b + a

a - b = b - a

1.0.0.4 Unary

NOT (negation)

\neg0 \equiv 1

1.0.0.5 Contraposition law

(p \implies q) \equiv (\neg q \implies \neg p)

1.0.0.6 De Morgan’s law

\neg(p \land q) \equiv \neg p \lor \neg q

\neg(p \lor q) \equiv \neg p \land \neg q

\neg(\forall x \in \mathbb{R}\ \phi(x)) \equiv (\exists x \in \mathbb{R}\ \neg\phi(x))

1.0.0.7 Tautology

\phi(p_1, \cdots,p_n) is called a tautology iff2 \phi(p_1, \cdots,p_n) \equiv 1

1.0.0.8 quantifiers

Assumption: x \in \{ 1, 2, \cdots, 10 \}

Order matters: (\forall x)(\exists y)\ x > y \equiv 1 while (\exists x)(\forall y)\ x > y \equiv 0


  1. \neg \equiv\ \sim↩︎

  2. iff \equiv if and only if \equiv \iff↩︎