1 integrals

1.0.1 notation

\int f'(x) dx = f(x) + const

1.0.2 rules

function integration with respect to x
a ax + const
x^n \frac{1}{n+1} x^{n+1} + const
e^x e^x + const
a^x \frac{a^x}{\ln(a)} + const
\ln(x) x\ln(x) - x + const
\sin(x) -\cos(x) + const
\cos(x) \sin(x) + const
\int af(x) a \int f(x)

1.0.3 integration by substitution

Let u = g(x) then: \int f(g(x))g'(x) dx = \int f(u)du.

Example:

Solve \int cos(x^2)x. Let u = x^2, u' = 2x.

Then \int cos(x^2)x = \frac{1}{2} \int cos(x^2)2x = \frac{1}{2} sin(x^2)