1 complex numbers

1.0.0.1 definition

A complex number z=x+iy where x,y \in \mathbb{R}, z \in \mathbb{C}

x, Re(z) - real part of z

y, Im(z) - imaginary part of z

\mathbb{R} \subsetneq \mathbb{C}

i \in \mathbb{C} - \mathbb{R}

1.0.0.2 conjunction

\bar{z} = x - iy

1.0.0.3 length

|z| = \sqrt{x^2 + y^2}

1.0.0.4 trigonometric/polar form

z = |z|(\cos{\alpha} + i\sin{\alpha})

where:

\cos{\alpha} = \frac{x}{|z|}

\sin{\alpha} = \frac{y}{|z|}

1.0.0.5 exponential form

z = |z|e^{i\alpha}

z^k = |z|^ke^{ik\alpha}

therefore:

e^{iz} = \cos{z} + i\sin{z}

1.0.0.6 roots

An n-th root of a complex number z (\sqrt[n]{z}) has n solutions: \{w_0, w_1, \cdots, w_{n-1}\} these are vertices of an n-regular polygon.

w_l = \sqrt[n]{|z|}e^{i\frac{\alpha + 2\pi l}{n}}

1.0.0.7 polynomials

let f(x) = x^2 + x + 1

f has no real roots it has however, 2 complex ones:

\begin{matrix} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \\ x = \frac{-1 \pm \sqrt{-3}}{2} \\ x = \frac{-1 \pm \sqrt{3i^2}}{2} \\ x = -\frac{1}{2} \pm i\frac{\sqrt{3}}{2} \\ \end{matrix}

if a,b,c \in \mathbb{R} and z is a root of f then \bar{z} is a root as well

1.0.0.8 cheatsheet

let z = |z|(\cos{\alpha} + i\sin{\alpha}), w = |w|(\cos{\phi} + i\sin{\phi}) then:

zw = |z||w|(\cos(\phi + \alpha) + i\sin(\phi + \alpha))

z^n = |z|^n(\cos(n\alpha) + i\sin(n\alpha))