1 introduction

1.1 notation

1.2 properties of waves

\lambda = \frac{c}{f}

f = \frac{1}{T}

1.3 electromagnetic wave EMF

Spatial distribution of an electric field (produced by stationary charges) and magnetic field (produced by moving charges/currents)

1.4 electromagnetic wave

Periodic (harmonic) variations of EMF in space (and time)

1.5 formulae

\vec D = \overline{\overline \epsilon} \vec E

\vec B = \overline{\overline \mu} \vec H

\vec J = \overline{\overline \sigma} \vec E

perms

\overline{\overline \epsilon} = \epsilon_0 \overline{\overline \epsilon}_r

\overline{\overline \mu} = \mu_0 \overline{\overline \mu}_r

where \epsilon_0 = \frac{10^{-9}}{36\pi}[\frac{F}{m}], \mu_0 = 4\pi10^{-7}[\frac{H}{m}]

1.6 amplitude to vector

Applies to any vector, H is just an example

H = H_0 \cdot e^{jwt}