\lambda = \frac{c}{f}
f = \frac{1}{T}
Spatial distribution of an electric field (produced by stationary charges) and magnetic field (produced by moving charges/currents)
Periodic (harmonic) variations of EMF in space (and time)
\vec D = \overline{\overline \epsilon} \vec E
\vec B = \overline{\overline \mu} \vec H
\vec J = \overline{\overline \sigma} \vec E
perms
\overline{\overline \epsilon} = \epsilon_0 \overline{\overline \epsilon}_r
\overline{\overline \mu} = \mu_0 \overline{\overline \mu}_r
where \epsilon_0 = \frac{10^{-9}}{36\pi}[\frac{F}{m}], \mu_0 = 4\pi10^{-7}[\frac{H}{m}]
Applies to any vector, H is just an example
H = H_0 \cdot e^{jwt}