1 Maxwell equations

1.1 del/nabla

Del is denoted by \nabla, it is a vector of derivatives of each component: \nabla = \frac{\delta}{\delta x} \hat{\imath} + \frac{\delta}{\delta y} \hat{\jmath} + \frac{\delta}{\delta z} \hat{k}

It doesn’t exist by itself, it will appear next to a vector or a multivariate function.

1.1.1 Laplacian

\Delta = \nabla \nabla = \nabla^2

1.2 curl

Curl (sometimes called rotation) describes the rotation of a vector field.

Let \vec{F} = [F_x, F_y, F_z], then:

curl(F) = \nabla \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta x} \\ F_x & F_y & F_z \\ \end{vmatrix} = \begin{bmatrix} \frac{\delta F_z}{\delta y} - \frac{\delta F_y}{\delta z} \\ \frac{\delta F_x}{\delta z} - \frac{\delta F_z}{\delta x} \\ \frac{\delta F_y}{\delta x} - \frac{\delta F_x}{\delta y} \\ \end{bmatrix}

1.3 gradient

Gradient of a scalar field f shows the direction to the local maximum of f.

grad(f) = \nabla f = \frac{\delta f}{\delta x}\hat{\imath} + \frac{\delta f}{\delta y}\hat{\jmath} + \frac{\delta f}{\delta z}\hat{k}

1.4 divergence

Divergence of a vector field \vec v is a measure of its increase in the direction it points

div(\vec v) = \nabla \cdot \vec v = \frac{\delta v_x}{\delta x} + \frac{\delta v_y}{\delta y} + \frac{\delta v_z}{\delta z}

1.4.1 formulae

1.4.1.1 differential forms

\nabla \times \vec E = -\frac{\delta \vec B}{\delta t}

\nabla \times \vec H = \vec J + \frac{\delta \vec D}{\delta t}

\nabla \cdot \vec D = \rho_v

\nabla \cdot \vec B = 0

1.4.1.2 complex forms

\nabla \times \underline{\vec E} = -j\omega \underline{\vec B}

\nabla \times \underline{\vec H} = \underline{\vec J} + j\omega \underline{\vec D}

\nabla \cdot \underline{\vec D} = \rho_v

\nabla \cdot \underline{\vec B} = 0

1.4.2 environment of propagating EM waves