\Delta z = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y
Let F(t) = f(g(t), h(t), i(t)) then:
F'(t) = f_x(g(t), h(t), i(t))g'(t) + f_y(g(t), h(t), i(t))h'(t) + f_z(g(t), h(t), i(t))i'(t)
\frac{\partial(u_1, \cdots ,u_m)}{\partial (x_1, \cdots, x_n)} = \begin{pmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \cdots & \frac{\partial u_1}{\partial x_n} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \cdots & \frac{\partial u_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots\\ \frac{\partial u_m}{\partial x_1} & \frac{\partial u_m}{\partial x_2} & \cdots & \frac{\partial u_m}{\partial x_n} \\ \end{pmatrix}
\frac{\partial(u_1,\cdots,u_m)}{\partial (t_1,\cdots,t_k)} = \frac{\partial(u_1,\cdots,u_m)}{\partial (x_1,\cdots,x_n)} \frac{\partial(x_1,\cdots,x_n)}{\partial (t_1,\cdots,t_k)}
To find extrema of a function in a region we first find the extrema inside the region with 2nd derivate test and then separately find extrema on the boundary.
To find the extreme values of f(x,y) on a g(x,y) = c constraint solve the system of equations:
\begin{cases} f_x(x,y) = \lambda g_x(x,y)\\ f_y(x,y) = \lambda g_y(x,y)\\ g(x,y) = c \\ \end{cases}
\int_{-\infty}^\infty e^{-x^2} dx = \sqrt{\pi}