second order linear differential
equations
homogenous
ay'' + by' + cy = 0
- y = e^{rx}
- ar^2e^{rx} + bre^{rx} + ce^{rx} =
0
- ar^2 + br + c = 0
- y = e^{r_1x}\ \lor\ y =
e^{r_2x}
- for c_1, c_2 as arbitrary
constants: y = c_1e^{r_1x} +
c_2e^{r_2x}
- If r is complex, the general
solution is in the form: y = e^{Re(r)x}(b_1
\cos(Im(r)x) + b_2 \sin(Im(r)x))
- If r_1 = r_2 then y = c_1e^{rx} + c_2xe^{rx}
non-homogenous
ay'' + by' + cy =
g(x)
Let y_h be the solution to ay'' + by' + cy = 0 and y_p is a collection of functions that
differentiated give g(x)
Then y = y_h + y_p
method of undetermined
coefficients
Examples:
- ay'' + by' + cy =
\sin(x)
- y_p = A\cos(x) + B\sin(x)
- y_p' = -A\sin(x) +
B\cos(x)
- y_p'' = -A\cos(x) -
B\sin(x)
- a(-A\cos(x) - B\sin(x)) + b(-A\sin(x) +
B\cos(x)) + c(A\cos(x) + B\sin(x)) = \sin(x)
- (-Aa + Bb + Ac)\cos(x) + (-Ba - Ab +
Bc)\sin(x) = \sin(x)
- So: -Aa + Bb + Ac = 0 and -Ba - Ab + Bc = 1
- Solving step 5 we get A and B
method of variation of
parameters
y_p = v_1 y_1 + v_2 y_2
\begin{cases}
v_1'y_1 + v_2'y_2 = 0 \\
v_1'y_1' + v_2'y_2' = \frac{g(x)}{a} \\
\end{cases}
Wronskian
W(x) = y_1y_2' + y_1'y_2
Then: v_1 = -\int \frac{g(x)y_2}{a \cdot
W(x)} dx and v_2 = \int
\frac{g(x)y_1}{a \cdot W(x)} dx
damped harmonic motion
\frac{d^2x}{dt^2} + \beta\frac{dx}{dt} +
\omega^2x = 0 where \beta =
\frac{\gamma}{m} and \omega^2 =
\frac{k}{m}
We can see this as a differential equation:
r^2 + \beta r + \omega^2 = 0
- if \beta^2 > 4\omega^2 (two real
roots) we call it overdamped
- if \beta^2 = 4\omega^2 (one real
root) we call it critically damped
- if \beta^2 < 4\omega^2 (complex
roots) we call it an underdamped case
- let \overline \omega = \omega \sqrt{1 -
\frac{\beta^2}{4\omega^2}}
- then x = e^\frac{-\beta t}{2}(c_1
\cos\overline\omega t + c_2 \sin\overline\omega t)
damped forced oscillations
m\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} +
kx = F_0 \cos \Omega t
The solution is:
x(t) = c_1e^{r_1t} + c_2e^{r_2t} + \frac{F_0}{\sqrt{m^2(\omega^2 -
\Omega^2)^2 + \gamma^2\Omega^2}}\cos(\Omega t - \delta)
Where \delta = \tan^{-1}\big (\frac{\gamma
\Omega}{m(\omega^2 - \Omega^2)}\big )