(x + y)^n = \sum_{k=0}^n \binom{n}{k}x^ky^{n-k}
n^{\underline k} = \binom{n}{k}k! = \frac{n!}{(n - k)!}
Let N be a set and have partitions denoted by A_i (i \le k).
\Pi(N) is the family of all such partitions of N
The Stirling number S_{n,k} = {n \brace k} is the number of all k-partitions of an n-set
B_n = \sum_k S_{n,k}
n = \lambda_1 + \lambda_2 + \cdots + \lambda_k where \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k \ge 1, \lambda_i \in \mathbf{N}
n = \lambda_1 + \lambda_2 + \cdots + \lambda_k where \lambda_1 \ge 1, \cdots, \lambda_k \ge 1, \lambda_i \in \mathbf{N}