Grid of pixels
Mapping colors of individual pixels of an image through a function: C_{out} = f(C_{in})
Mapping colors of a matrix of pixels of an image through a kernel.
I'_{x, y} = I_{off} + \frac{\sum_i \sum_j M_{i, j} \cdot I_{x+i, y+j}}{D}
Where M_{0,0} is the anchor of the kernel.
\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix}
G(x,y) = \frac{1}{2 \pi \sigma^2} \exp{(-\frac{x^2 + y^2}{2\sigma^2})}
\begin{bmatrix} 0 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 0 \\ \end{bmatrix}
\begin{bmatrix} 0 & -\frac{a}{s} & 0 \\ -\frac{a}{s} & \frac{b}{s} & -\frac{a}{s} \\ 0 & -\frac{a}{s} & 0 \\ \end{bmatrix}
Where s = b - 4a
\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \\ \end{bmatrix}
\begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}
\begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}
\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}
\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \\ \end{bmatrix}
\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \\ \end{bmatrix}
\begin{bmatrix} -1 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \\ \end{bmatrix}
Described only by intensity:
p = k \ln \frac{Y}{Y_0}
where p - perceived brightness, Y - luminance, Y_0 - threshold luminance
Ratio of luminous intensity of the brightest and darkest possible point on the screen (Y_0 : 1)
Typical LCD displays have between 400:1 and 2000:1
Intensity at the vicinity of an edge is overestimated for light values and underestimated for dark values
Printing using dots of ink
Cyan Magenta Yellow (K)Black
Each rotated to not overlap:
Impression of multiple levels of gray on a device capable of displaying limited number of levels
Example dither matrices:
D_2 = \begin{bmatrix} 1 & 3 \\ 4 & 2 \\ \end{bmatrix}
D_3 = \begin{bmatrix} 3 & 7 & 4 \\ 6 & 1 & 9 \\ 2 & 8 & 5 \\ \end{bmatrix}
B_n = \frac{1}{n^2 + 1}D_n
Error being the difference between the approximated pixel value and the real value is distributed to neighboring pixels. So a weighted error diffusion can be applied, which modifies the pixels which will be processed next:
\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{7}{16} \\ \frac{3}{16} & \frac{5}{16} & \frac{1}{16} \\ \end{bmatrix}